Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

f(x, empty) → x
f(empty, cons(a, k)) → f(cons(a, k), k)
f(cons(a, k), y) → f(y, k)

Q is empty.


QTRS
  ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

f(x, empty) → x
f(empty, cons(a, k)) → f(cons(a, k), k)
f(cons(a, k), y) → f(y, k)

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

f(x, empty) → x
f(empty, cons(a, k)) → f(cons(a, k), k)
f(cons(a, k), y) → f(y, k)

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

f(x, empty) → x
f(empty, cons(a, k)) → f(cons(a, k), k)
f(cons(a, k), y) → f(y, k)
Used ordering:
Polynomial interpretation [25]:

POL(cons(x1, x2)) = 1 + x1 + 2·x2   
POL(empty) = 0   
POL(f(x1, x2)) = 1 + x1 + 2·x2   




↳ QTRS
  ↳ RRRPoloQTRSProof
QTRS
      ↳ RisEmptyProof

Q restricted rewrite system:
R is empty.
Q is empty.

The TRS R is empty. Hence, termination is trivially proven.